

Faster XML data validation in a programming language with XML datatypes

Kurt Svensson

Inobiz AB
Kornhamnstorg 61, 103 12 Stockholm, Sweden

kurt.svensson@inobiz.se

Abstract

EDI-C is a programming language used in B2B (EDI, WebServices) applications. It is possible
to declare XML variables in the language. XML variables are declared in a way similar to
structures in C and C++. These variables are accessed through dot-notation. Validation
information (facets) can also be declared. The XML structures and their validation values are,
at compile time, optimized for fast evaluation and execution in the runtime environment.
Usually XSD schema are read and evaluated when an XML document loads – our method
loads and evaluates the XSD schema at compile time. Thus, when executing a program, the
XSD schema has already been loaded and evaluated – i.e., it’s no longer necessary to load and
evaluate each time the program is executed. This method increases XML processing speed,
which is vital for WebServices messaging.

Keywords

B2B, WebServices, format conversion, XML, XML data declarations, XSD schema, XSD
schema facets, data validation.

1 Introduction

EDI-C is a special purpose language developed for programming data format conversions in
B2B (EDI, WebServices) applications. A program written in EDI-C is compiled into a compact
binary file containing a statement tree and various structures such as symbol table, string
areas, DOM trees etc. DOM trees can represent XML, EDI (X12, EDIFACT) structures and
transaction files. The compiled binary file is interpreted by the EDI-C Runtime virtual
machine.

The design goal was to make the language suitable for programming data format conversions
– no more, no less.

1) The syntax has to be as close to C and C++ as possible to make it easy for developers to
learn the language.

2) Dynamic type conversion between the basic data types: integer and string.

3) No function prototypes have to be declared. Function calls are done with “call by value”
parameter passing. Recursive function calls are not allowed.

4) Ability to declare variables that describe the structures of XML, X12, EDIFACT and
transaction files. These variables must be directly addressable – no function calls.

5) Embedded SQL as defined in the standard SQL/92 [1].

6) Possibility to call COM objects, .NET components, EXE files, DLLs and other EDI-C
programs

ACM SIGPLAN Notices 15 Vol. 42 (11), Nov. 2007

The complete language is described in [2].

2 Overview of the programming language EDI-C

The syntax for EDI-C follows the general rules applicable for C and C++.

main ()

{

print (“Hello world”);

}

The basic data types are: string and integer. Automatic type conversion is done when these
data types are used in expressions and function calls.

integer i = ”0075” + 25;

// i now contains 100

The data type string is similar to the string type in Java and C#. The & character is used as
the concatenation operator instead of +.

string Text = ”Today is ” & date ();

Statements are if ... else, switch, for, while, do ... while, break, continue

and return. The goto statement is omitted since it is considered harmful.

Approximately 400 standard built-in functions are available. Many of them are quite “high-
level”.

// Read a file and convert its data from EBCDIC to ASCII

string s = convertm (readfile (“File.txt”), 2, 0);

The language supports embedded SQL and the SQL engine in the EDI-C Runtime uses ODBC,
which means that all database systems with an ODBC driver can be used.

EXEC SQL SELECT seller, buyer

 INTO :sSellersId, :sBuyersId

 FROM orderhead

 WHERE orderno = :sMyOrderNumber;

COM components are accessible.

object MyObj;

MyObj = createobject (”xTradeSystem.xtServer”);

MyObj.CreateParse (sender, receiver);

string s = MyObj.mRefIds;

MyObj.RemoteName = computername ();

++MyObj.Counter;

3 Declarations of XML variables

Assume we have a (very simple) XML file such as:

<?xml version=”1.0” encoding=”UTF-8”?>

<Order>

 <Header>

ACM SIGPLAN Notices 16 Vol. 42 (11), Nov. 2007

 <Buyer>The Shoestore</Buyer>

 <Seller>ACME Inc</Seller>

 </Header>

 <Article ArticleNumber=”123456”>

 <Type>Walking Shoe</Type>

 <Color>Black</Color>

 <Size>7.5</Size>

 <Quantity>12</Quantity>

 </Article>

 <Article ArticleNumber=”234567”>

 <Type>Golf Shoe</Type>

 <Color>Brown</Color>

 <Size>8</Size>

 <Quantity>25</Quantity>

 </Article>

</Order>

The XML file above represents an order for 12 pairs of black walking shoes and 25 pairs of
brown golf shoes.

The structure of this XML file can be described in an EDI-C program as:

xmlpcdata pcdata;

xmlelem Buyer { pcdata; };

xmlelem Seller { pcdata; };

xmlelem Header { Buyer; Seller; };

xmlelem Type { pcdata; };

xmlelem Color { pcdata; };

xmlelem Size { pcdata; };

xmlelem Quantity { pcdata; };

xmlelem Article

 attribute (name=”ArticleNumber” use=”required”)

 {

 Type;

 Color;

 Size;

 Quantity;

 };

xmldoc Order

 {

 Header;

 Article [9999];

 };

If an element or attribute name contains special characters, then the name should be placed
within double quotes.

xmlelem “Säljare” { pcdata; }; // Swedish for seller

Namespace can be specified.

xmlelem dt:Seller { pcdata; };

So-called virtual namespaces are used for elements with the same name but different content.
Recursive definitions also use virtual namespaces, which are specified as integers.

xmlelem dt:A {cac:B; cac:C; cs:D; };

xmlelem 1:dt:A {cac:B; cs:D; cac:E; };

ACM SIGPLAN Notices 17 Vol. 42 (11), Nov. 2007

Groups (sequence, choice, all) are declared as:

xmlelem SomeGroup type=”choicegroup” { Abc; Def; };

In real B2B applications, XML structures are far more complicated than our example. By
using the Inobiz Development System, the developer can import XSD schema files. The
Development System can then automatically generate the necessary XML declarations.
However, it is not the scope of this text to describe the Development System [3].

4 Addressing XML variables

Addressing the various attributes and data fields is done through dot-notation.

Order.Header.Seller.pcdata = “ACME Inc”;

If any of the element names contain special characters, put the name within double quotes.

Order.Header.”Säljare”.pcdata = “ACME Inc”;

Indexing is relative 1, not 0.

Order.Article[2].#ArticleNumber = “234567”;

Order.Article[2].Quantity.pcdata = 25;

Note that attributes and pcdata have the string data type.

A variable of the type xmlptr can be set to point to an element node in the XML tree.

// Set p to point to first Article

xmlptr p = Order.Article[1];

// Same effect as above

xmlptr p = Order.Article;

Loop trough all articles and insert the data into an SQL database.

for (xmlptr p = Order.Article; xmldata (p); ++p)

 {

 EXEC SQL INSERT INTO ArticleTable (artnum, type, color, qty)

 VALUES(:p.#ArticleNumber, :p.Type.pcdata,

 :p.Color.pcdata, p.Quantity.pcdata);

 }

5 Reading and writing XML files

An XML file is read and parsed by calling the built-in xmlread function.

xmlread (Order, “SomeFile.xml”);

If the XML document is in a string, not in a file, an extra parameter to the function is needed.

string s = readfile (“SomeFile.xml”);

xmlread (Order, s, “m”);

ACM SIGPLAN Notices 18 Vol. 42 (11), Nov. 2007

The XML syntax is checked when parsing the document. The XML document must exactly
match the declared XML structure. Any parsing errors are written to the current error log file
as:

ERROR: ‘SomeFile.xml’ (7,12) Undefined attribute ‘ArticleNum’

 in element ‘Article’ near

 ‘ArticleNum=”123456”>\r\n <Type>Walking Shoe</’

XML files are written using the xmlwrite function.

// Write the XML document. Append CR/LF at the end of each element and

// indent elements for better readability

xmlwrite (Order, “SoutOutputFile.xml”, “n”, “2”);

6 The xmlfacets variable

Pcdata and attributes in elements contain data. In the current implementation, the data have
the string type and the length of the data could be between 0 and 40000. In XSD schemas it
is possible to restrict the properties of element and attribute data [4] [5]. An EDI-C variable of
the type xmlfacets is used to define these restrictions.

The syntax of the xmlfacets variable declaration is:

xmlfacets name

 type=”value”

 minLength=”value”

 maxLength=”value”

 minExclusive=”value”

 maxExclusive=”value”

 minInclusive=”value”

 maxInclusive=”value”

 totalDigits=”value”

 fractionDigits=”value”

 pattern=”regular-expression”

 enumeration=”value”, “value”, “value” . . . ;

At least one of the facets attributes must be present.

The type attribute value can be any of the following:

string, normalizedString, token, byte, unsignedByte, base64Binary, hexBinary,

integer, positiveInteger, negativeInteger, nonNegativeInteger,

nonPositiveInteger, int, unsignedInt, long, unsignedLong, short,

unsignedShort, decimal, float, double, boolean, time, dateTime, duration,

date, gMonth, gYear, gYearMonth, gDay, gMonthDay, Name, QName, NCName,

anyURI, language, ID, IDREF, IDREFS, ENTITY, ENTITIES, NOTATION, NMTOKEN,

NMTOKENS, anyType, anySimpleType

Value restrictions can be defined for the various elements for the XML Order document
example. Restrictions can be added to the XML structure by declaring xmlfacets variables.

The xmlfacets variables are referred to in the pcdata/attribute specifications. The complete

declaration of the XML Order document may now be:

xmlfacets NameProperties

 type=”string” // Default

 minLength=”3” maxLength=”35”;

ACM SIGPLAN Notices 19 Vol. 42 (11), Nov. 2007

xmlfacets ArtNumRestriction

 type=”integer” minInclusive=”100000”

 maxInclusive=”999999”;

xmlfacets TypeRestriction

 minLength=”4” maxLength=”20”;

xmlfacets ColorRestr

 pattern=”Black|Brown|White”;

xmlfacets PossibleSizes

 type=”decimal”

 enumeration=”6.5”, “7”, “7.5”, “8”, “8.5”;

xmlfacets Quantites

 type=”integer” minExclusive=”0” maxExcluive=”1000”;

xmlpcdata pcdata;

xmlelem Buyer { pcdata facets=”NameProperties”; };

xmlelem Seller { pcdata facets=”NameProperties”; };

xmlelem Header { Buyer; Seller; };

xmlelem Type { pcdata facets=”TypeRestriction”; };

xmlelem Color { pcdata facets=”ColorRestr”; };

xmlelem Size { pcdata facets=”PossibleSizes”; };

xmlelem Quantity { pcdata facets=”Quantities”; };

xmlelem Article attribute (name=”ArticleNumber”

 facets=”ArtNumRestriction” use=”required”)

 {

 Type;

 Color;

 Size;

 Quantity;

 };

xmldoc Order

 {

 Header;

 Article [9999];

 };

When the program is compiled, all of the facets values, including the enumeration constants,
will be inserted into the compilation unit.

7 Facets validation

Facet validation can be made in three ways:

a) When an XML document is read and parsed.

// Parameter “v” == validate

xmlread (Order, “SomeFile.xml”, “v”);

b) When an XML document is written.

// Parameter “v” == validate

xmlwrite (Order, “SomeOutputFile.xml”, “v”);

c) Anywhere in a program.

// Example 1. Validate the whole XML tree

xmlvalidate (Order);

ACM SIGPLAN Notices 20 Vol. 42 (11), Nov. 2007

// Example 2. Validate each article prior

// to inserting data into a database

string ValErrors = “”;

for (xmlptr p = Order.Article; xmldata (p); ++p)

 {

 if (xmlvalidate (p) == true)

 EXEC SQL INSERT INTO ArticleTable (artnum, type, color, qty)

 VALUES (:p.#ArticleNumber, :p.Type.pcdata, :p.Color.pcdata,

 :p.Quantity.pcdata);

 else

 // Pick up errors for later processing

 ValErrors &= xmlvalidateerrors ();

 }

A validation error message could be written as:

‘Article[47].Color.pcdata’ contains ‘Light-brown’. Does not match ‘pattern’

value ‘Black|Brown|White’

8 Conclusion

A special DOM tree will be constructed at compile time according to the XML declarations.
This tree is optimized in such a way that the EDI-C Runtime XML reader can parse and
validate XML documents at high speed. The facets and their values are, at compile time,
stored in a data structure which will be accessed by the validation mechanism at runtime.
Calling the validation mechanism is done from within the XML parser, just as the data is
stored in a DOM tree leaf (pcdata/attribute). The same method is used when writing an XML
file. The EDI-C XML reader is fast; it parses XML at a speed of 6-7 MB/second on a 3 GHz
Windows-PC. If “normal” facets validation is used, the speed will be slowed down to
approximately 3-5 MB/second. The XML writer process data at a speed of about 7
MB/second. Writing with validation will slow down the speed.

While speed is perhaps not a crucial factor for ordinary EDI-applications, it is important when
using WebServices as a messaging method. Tests have shown that our approach of
reading/writing and especially validating has significantly increased the processing speed of
WebService applications.

References

[1] Jim Melton, Alkan R. Simon, Understanding the new SQL, Morgan Kaufman, 1993
[2] Inobiz AB, The EDI-C Programming Language, Reference Manual, 2002-2007.
[3] Inobiz AB, Development System Users Guide, 2002-2007.
[4] W3C, XML Schema Part 2: Datatypes Second Edition, 28 Oct 2004.
[5] Priscilla Walmsley, Definitive XML Schema, Prentice Hall, 2002

ACM SIGPLAN Notices 21 Vol. 42 (11), Nov. 2007

